
1

A Simplified Example of TCP/IP Communication
Chuck Cusack

This is a simple example of how messages are sent from one machine to another (from a source

to a destination) using the four-layer Internet software model. The four layers are application,

transport, network, and link layers. In TCP/IP, the transport layer is TCP (or UDP, etc.), the

network layer is IP, and the link layer is Ethernet. Although the layers used here are the same

as the TCP/IP protocol, it is not exactly TCP/IP. Several simplifying assumptions were made

and some of the details are not exactly how TCP/IP is implemented. This is done so we can

focus on only a few of the important issues involved—specifically the jobs of each of the four

layers.

The four layers

Here is a description of the tasks of each of the four layers. A brief example is given for each.

Following this, a longer example is given to demonstrate the overall process.

APPLICATION

Sending: It creates a message, specifies the destination, and forwards it to the transport layer.

Receiving: It receives messages from the transport layer and does whatever it needs to with them.

A few important details:

• The source and destination need to be specified by the IP address of each machine. When

sending, the machine in question is the source. When receiving (from the transport layer), the

destination is the machine in question.

• Users don’t like to remember IP addresses and instead use URLs. Thus, the application layer is

responsible for determining the IP address based on the URL. Applications use Domain Name

System (DNS) to look up IP addresses.

• Since there are many applications running on a computer there has to be a way to determine

which message is for which application. For instance, if the homepage from cnn.com is

returned, should it be sent to FireFox or Chrome? This is done by assigning a port to each

application. A port is just a number—think of it as a room number or the number in a street

address. As we will see, the transport layer forwards messages to applications based on the

port number.

• Some port numbers are fixed and known to everyone. For instance, HTTP uses port 80, SMTP

uses 25, FTP uses 21, SSH uses 22, POP uses 110, etc. This is important since it allows any

computer in the world to request a webpage by sending the request to port 80 of the proper

machine (e.g. cnn.com). Other ports are assigned as needed—for instance, your web browser

(FireFox, Chrome, etc.) might be assigned different port number every time you run them.

Example 1: I want to see the latest XKCD comic, so I type http://xkcd.com into Firefox (my web

browser). Firefox knows that this means that I want to view the webpage at that URL. Firefox

noticed that I specified the address as “xkcd.com”, which is not an IP address. It uses DNS and

determines that the IP address is 67.215.65.132. Since it is an HTTP request, it also knows that

port 80 should be used. Finally, Firefox tells the transport layer “Request the webpage at port 80

on IP Address 67.215.65.132 and have it sent back to me (IP address 209.140.209.32).”

2

TRANSPORT

Sending: When sending a message (from the application layer), the transport layer is responsible to

chop it up into manageable sized packets, assign a sequence number to each packet (so they can be put

back together in the right order), and forward the packets to the network layer.

Receiving: When receiving packets (from the network layer), it is responsible to reassemble packets

into the original message (using the sequence numbers) and forward the message to the appropriate

application based on the port number.

A few important details:

• The application layer will indicate the port on the destination machine (since generally it will

be a well-known port number), but the transport layer must add to each packet the port number

it assigned to the application that is sending the message. Again, it needs to do this so that

when the response comes back the transport layer will know which application should receive

the response.

• The transport layer sends the network layer a packet with source and destination IP addresses

and port numbers, along with a portion of the original message (assuming it was split into

multiple packets).

Example 2: The transport layer received the request from Example 1 and decided it was too long,

so it chopped it into three parts, giving them sequence numbers 1, 2, and 3. It was told to use port

80 on the destination and has assigned Firefox port number 2143. For each of the three parts of the

original message, it tells the network layer: “Please send this packet (with its contents) from port

2143 at IP address 209.140.209.32 to port 80 at IP address 67.215.65.132.”

NETWORK

The job of the network layer is to route packets to their destination. When the network layer receives a

packet (from either the link layer or the transport layer) it needs to decide where to send it next. The

network layer can do one of three things with a packet:

1. If it is from the link layer and is addressed to this machine, it forwards it to the transport layer.

2. If it is for a machine in the same network, it forwards it to that machine.

3. If it is for a machine in a different network, it forwards it to the appropriate router than can get

it closer to its final destination. We won’t worry about how it decides this.

Since the link layer in Ethernet relies on MAC addresses (Media Access Control address, also called

Ethernet addresses) to send packets, the network layer needs to determine the source and destination

MAC addresses. MAC addresses are usually represented with 12 hexadecimal characters, and when

written, typically a colon is placed between every other character (e.g. 18:A9:05:B8:E3:7D). It is

important to note that the source and destination MAC addresses may or may not correspond to the

source and destination IP addresses. In particular, it always sets the source to its own MAC address

since it is the one sending the packet right now. The destination is set to the MAC address of the next

machine it is going to—either a router or the final destination. It determines MAC addresses using

ARP (Address Resolution Protocol).

Example: The MAC address of the source is 18:A9:05:B8:E3:7D. The destination is not on this

network, but the router with IP address 67.200.45.1 and MAC address 00:34:AB:86:7D:20 will

get it closer. So the network layer tells the link layer to send the packet (including the contents,

3

IP addresses, and port numbers) to MAC address 00:34:AB:86:7D:20 from MAC address

18:A9:05:B8:E3:7D. Notice that we never used the IP address of the router.

LINK

Sending: When the network layer gives a packet to the link layer, the link layer simply sends it on its

way on the network.

Receiving: When the link layer receives a packet from the network it looks at the MAC address to see

who it is addressed to.

• If it is the MAC address of this computer, it forwards it to the network layer.

• Otherwise it ignores the packet.

Example: Given the above request, the link layer simply sends the message on its way.

The Big Example

Now we give a more complete example. For this example I am on foo.cs.hope.edu and want to see a

webpage from homestarrunner.com. There are two routers between foo.cs.hope.edu and

homestarrunner.com as seen in the diagram below. The example will follow the message from

foo.cs.hope.edu to homestarrunner.com. We will focus on what happens at the various layers on the

various machines involved.

The network in our example

Machine foo.cs.hope.edu Router 1 Router 2 homestarrunner.com

IP Address 198.110.97.7 198.110.96.1 123.45.67.89 69.59.23.70

MAC Address 00:07:e9:e5:ca:43 00:08:e2:62:34:08 00:01:02:03:04:05 11:22:33:44:aa:bb

4

On foo.cs.hope.edu

User

1. I am working on foo.cs.hope.edu, and I want to load homestarrunner.com, so I put the URL

http://homestarrunner.com into the address bar of FireFox.

Application Layer (FireFox)
1. A user wants the contents from http://homestarrunner.com. I

need to request this. In order to do so, I need to know the IP

of the machine and the port number of the application on that

machine that handles the request I am going to make.

2. Since the URL starts with “http”, the request is using the

HTTP protocol and I want to communicate with the web

server. These requests always use port 80.

3. To get the IP address for homestarrunner.com, I use DNS. The IP is 69.59.23.70.

4. I also need to specify my IP address as the return address so the information can be sent back.

Mine is 198.110.97.7.

5. Finally, I need to send the following to the Transport Layer:

Please send the message “Send the contents of index.html” to port 80 of 69.59.23.70,

and return the response to me at IP 198.110.97.7.

Transport Layer
1. An application (FireFox) asked me to send the message “Send

the contents of index.html”.

2. I need to pick a port number for FireFox so when I get a

response I know where it goes. Port 2175 is available, so I

will use that.

3. I don’t know what this message means, and I don’t care. But

I do know that the message is too long, so I’ll break it up into 2 packets: “Send the conten” and

“ts of index.html”.

4. Next I need to create two packets which specify the messages, ports, and sequence numbers so

the packets can be reassembled. The packets are:

src port dst port Seq# Message

2175 80 1 Send the conten

src port dst port Seq# Message

2175 80 2 ts of index.html

5. Finally, I need to send the following two messages to the Network Layer:

Please send the message “2175|80|1|Send the conten” to 69.59.23.70, and set the return

address to 198.110.97.7.

Please send the message “2175|80|2|ts of index.html” to 69.59.23.70, and set the return

address to 198.110.97.7.

5

Network Layer

1. The transport layer gave me a few packets to send to

69.59.23.70. I don’t know what the details in the Message

from the transport layer mean. I just treat it as a blob of data.

The transport layer on the receiving machine can worry about

what it means.

2. I assemble two packets as follows:

src IP dst IP Message

198.110.97.7 69.59.23.70 2175|80|1|Send the conten

src IP dst IP Message

198.110.97.7 69.59.23.70 2175|80|2|ts of index.html

3. Now I need to determine if the destination is in my network. If so, I will send the packet

directly. If not, I will send it to a router to forward. Unfortunately, this is not in my network.

I’ll send it to the router with IP 198.110.96.1 since it is the only one connected to my network.

4. Next, I need to determine the Ethernet addresses of the source and destination. I need to do this

because the link layer does not use IP addresses—it uses Ethernet addresses.

5. The source is always the machine sending the packets, which is not necessarily the original

source of the message. I can use the arp protocol to look up the addresses, and I see that

a. My Ethernet address is 00:07:e9:e5:ca:43.

b. The Ethernet address of 198.110.96.1 (the current destination) is 00:08:e2:62:34:08.

Notice that the Ethernet address of the destination is not the final destination, but the

intermediate step.

6. Finally, I send the following messages to the Link Layer:

Please send the message “198.110.97.7|69.59.23.70|2175|80|1|Send the conten” to

00:08:e2:62:34:08, and set the return address to 00:07:e9:e5:ca:43.

Please send the message “198.110.97.7|69.59.23.70|2175|80|2|ts of index.html” to

00:08:e2:62:34:08, and set the return address to 00:07:e9:e5:ca:43.

Link Layer
1. The network layer gave me some messages to send. I don’t

know what the details in the Message from the network layer

mean. I just treat it as a blob of data. The network layer on the

destination can worry about what it means.

2. I have to assemble and send the packets to the specified

address. The packets are:

src Ethernet dst Ethernet Message

00:07:e9:e5:ca:43 00:08:e2:62:34:08 198.110.97.7|69.59.23.70|2175|80|1|Send the conten

src Ethernet dst Ethernet Message

00:07:e9:e5:ca:43 00:08:e2:62:34:08 198.110.97.7|69.59.23.70|2175|80|2|ts of index.html

3. I send the packets to the machine with Ethernet address 00:08:e2:62:34:08. More accurately, I

send the packets to the network card which will forward it to the network which will send it to

all of the machines on that part of the network (since Ethernet uses a bus architecture).

6

We will ignore the second packet for a while, since exactly the same thing happens with each packet

until they both get to the final destination.

On Router 1 (IP 198.110.96.1 and Ethernet address 00:08:e2:62:34:08)

Link Layer
1. I received a packet from the network. It is addressed to my

MAC address, so I’ll extract the message and give it to the

network layer since that is all I know how to do.

2. I send the following to the network layer:

Received message:

“198.110.97.7|69.59.23.70|2175|80|1|Send the conten”.

Network Layer

1. I was given a packet from the link layer. Here is what it is:

src IP dst IP Message

198.110.97.7 69.59.23.70 2175|80|1|Send the conten

2. It is not addressed to me, so I need to forward it.

3. It is headed to an IP address that is not on my network. I

have 4 possible routers to forward it through. After looking a few things up, I determine that I

should forward it to IP 123.45.67.89.

4. Next, I need to determine the Ethernet addresses of the source (me) and destination.

a. My Ethernet address is 00:08:e2:62:34:08

b. The Ethernet address of 123.45.67.89 (the current destination) is 00:01:02:03:04:05

Notice that neither the source nor destination Ethernet address corresponds to the IP addresses

of the original source or destination. The link layer, which uses these addresses, does not care

about the original source or final destination. It only cares about where it is coming from and

going to right now.

5. Finally, I send the following messages to the Link Layer:

Please send the message “198.110.97.7|69.59.23.70|2175|80|1|Send the conten” to

00:01:02:03:04:05, and set the return address to 00:08:e2:62:34:08.

Link Layer
1. The network layer gave me a message to send.

2. I have to assemble and send the packet to the specified

address. The packet is:

src Ethernet dst Ethernet Message

00:08:e2:62:34:08 00:01:02:03:04:05 198.110.97.7|69.59.23.70|2175|80|1|Send the conten

3. I send the packet to the machine with Ethernet address 00:01:02:03:04:05.

7

On Router 2 (IP 123.45.67.89 and Ethernet address 00:01:02:03:04:05)

Link Layer

1. I received a packet from the network. It is addressed to

my MAC address, so I’ll extract the message and give it to

the network layer since that is all I know how to do.

2. I send the following to the network layer:

Received message:

“198.110.97.7|69.59.23.70|2175|80|1|Send the conten”.

Network Layer

1. I was given a packet from the link layer. Here is what it is:

src IP dst IP Message

198.110.97.7 69.59.23.70 2175|80|1|Send the conten

2. It is not addressed to me, so I need to forward it.

3. The destination IP is in my network, however, so I can send it to the final destination.

4. Next, I need to determine the Ethernet addresses of the source (me) and destination.

a. My Ethernet address is 00:01:02:03:04:05.

b. The Ethernet address of 69.59.23.70 (the current and, in this case, final destination) is

11:22:33:44:aa:bb.

In this case, the Ethernet address and the IP address of the destination correspond, since this is

the final destination.

5. Finally, I send the following messages to the Link Layer:

Please send the message “198.110.97.7|69.59.23.70|2175|80|1|Send the conten” to

11:22:33:44:aa:bb, and set the return address to 00:01:02:03:04:05.

Link Layer
1. The network layer gave me a message to send.

2. I have to assemble and send the packet to the specified

address. The packet is:

src Ethernet dst Ethernet Message

00:01:02:03:04:05 11:22:33:44:aa:bb 198.110.97.7|69.59.23.70|2175|80|1|Send the conten

3. I send the packet to the machine with Ethernet address 11:22:33:44:aa:bb.

8

On homestarrruner.com (IP 69.59.23.70, Ethernet address 11:22:33:44:aa:bb)

Link Layer

1. I received a packet from the network. All I know how to

do is send and receive packets, so I’ll extract the message

and give it to the network layer.

2. I send the following to the network layer:

Received message:

“198.110.97.7|69.59.23.70|2175|80|1|Send the conten”

Network Layer

1. I was given a packet from the link layer. Here is what it is:

src IP dst IP Message

198.110.97.7 69.59.23.70 2175|80|1|Send the conten

2. The packet is addressed to me, so I will extract the

message and send it to the transport layer:

Received message: “2175|80|1|Send the conten”

Transport Layer

1. A message was received from the network layer. I need to

decode it. It is:

src port dst port Seq# Message

2175 80 1 Send the conten

2. Good, but I need another packet. Oh, here it is:

src port dst port Seq# Message

2175 80 2 ts of index.html

3. I combine the packets using the sequence numbers to get “Send the contents of index.html”.

4. The message is addressed to port 80, which is the HTTP port. I will forward the message to

the HTTP server application. The message is:

Received message “Send the contents of index.html” to port 2175 of 198.110.97.7.

Application Layer (HTTP Server)
1. I received a request for the webpage. It came from port

2175 of the machine with IP address 198.110.97.7.

2. I need to prepare and send a response (the content of the

webpage).

3. I send the following to the Transport Layer:

Please send the message “Everybody! Everybody!” to port 2175 of 198.110.97.7, and

set the return IP address to 69.59.23.70.

And the process continues the other way…

